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SUMMARY

Numerical solutions of the unsteady Euler equations are obtained using the
classical fourth order Runge Kutta time marching scheme. This method is fully
explicit and is applied to the governing equations in the finite volume, con-
servation law form. In order to determine the efficiency of this scheme for
solving turbomachinery flows, steady blade-to-blade solutions are obtained for
compressor and turbine cascades under subsonic and transonic flow conditions.
Computed resuits are compared with other numerical methods and cascade tunnel
measurements. The present study also focuses on other important numerical
aspects influencing the performance of the algorithm and the solution accuracy
such as grid types, boundary conditions, and artificial viscosity. For this
purpose, H, 0, and C type computational grids as well as characteristic and
extrapolation type boundary conditions are included in the solution procedure.

INTRODUCTION

A broad spectrum of flow conditions are encountered at various stages of
a modern gas turbine engine operational cycle. These conditions are highly
complex and are significantly diversified from one component to the other.
Development of analytical tools closely representing the important flow fea-
tures is a necessary step for efficient design, operation, and performance
improvements. Due to the lack of computing resources and l1imitations of the
existing analytical methods, no single study can hope to provide all the infor-
mation and answers to the complete needs and satisfaction of the design engtl-
neer. Hence, development of numerical methods is customarily carried out in
stages, ultimately hoping to produce a model representing the gas turbine flow
field as realistically as possible.

The purpose of the present study is to develop a fast and accurate Euler
cascade computer flow code that can be used for the design and performance
improvements of critical gas turbine engine components such as compressors and
turbines. Development of the solution procedure s based on the Jameson's
fourth order Runge Kutta numerical integration scheme (ref. 1). This scheme
has been successfully applied and shown to yield fast results with good accu-
racy for external aerodynamic flow problems. Other major advantages that
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prompted the authors to apply this method for internal turbomachinery flows are
the simplicity and straightforward implementation procedure, independence of
the steady-state solution on the time step taken and the vectorizable nature

of the scheme.

The numerical results obtained in this study address several important
issues related to the performance of the present method compared to the other
schemes that exist in the 1iterature for cascade flows (refs. 2 to 8). These
issues include solution convergence, mass and total pressure conservation, grid
types such as H, 0, and C, boundary condition methods, and influence of flow
geometry variation such as compressors and turbines.

GOVERNING EQUATIONS AND NUMERICAL INTEGRATION SCHEME

The Euler equations governing the two-dimensional inviscid flows can be
written in the integral form as

:—t// Udxdy + ¢[Fody _ Gedx] = 0 (1)
AR R
where AR 1is the flow domain, R 1s the flow boundary, x and y are the
Cartesian coordinates. The vectors U, F and G 1in equation (1) are
s [ pu i [ pv ]
2
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Here, p, u, v, p, E, and H are the density, velocity components in the x
and y directions, pressure, total energy, and total enthalpy respectively.
For a perfect gas
_ p 1,2 2
£ = v - 1s ' 2 (u° + v") (3)
and
p
H=E+
. (4)
where y 1is the specific heat ratio. Approximation to equation (1) leads to

finite volume numerical method in conservation form.

Runge Kutta Integration Scheme

The flow domain i1s divided into a number of small finite volume (finite
area in two dimensions) computational cells and the numerical approximation of
equation (1) 1s applied to each cell separately. This procedure leads to a
system of ordinary differential equations of the form
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%; [U+ 8A] + GeU - DU = 0 (5)

which can be solved by any number of integration schemes. In this equation, aA
is the cell area, Q 4s the spatial differencing operator and D(U) 1is the
added artificial dissipative term to supress numerical instabilities in the
region of very large flow variations. The exact form of equation (5) when
applied to the x momentum component for example, is (with the dissipative
term omitted for simplicity)

4
d ~
Gr [ou = 81+ ) (Typu, + BY,P) = O (6)
k=1
where the flux velocity Q) 1s
Q = ayu, - 8x v, | (7)

and the sum i1s over all four sides of the cell. 1In figure 1 the four sides of
the cell (1,3) are denoted by numbers one to four. The dependent flow varia-

bles such as p, pu, pv, etc. are cell centered and the values (pU)x across

any side k are average values on the two sides of the face.

For example,

(pu); - 15[(,=>u)1,J ' (pu)hj_]]
(PU)g = [‘P“’1,J . (pu)m,J]
ax, = (xp - xp) = ¥ 5ay, = (v -yp) 7 (8)

and so on.

Equation (5) is integrated using the modified four stage Runge Kutta
scheme in which the dissipative terms are frozen at the values of the first

stage. The values at the time level "n" are then updated to the new time
level "n + 1" in the following four stages:

(1) n _at
U = U - o [QUT - U]

(2) _n _ At = (1) &
u = U - o [QU - DU

(3) t (2) )

n At = ~ N

U = U - 4y (U - DU]

n+l n At ~(3) =N
U =U - [qQu - DU}

where At 1is the local time marching step. The dissipative operator D 4s a
blend of second and fourth differences. The operator depends on the local
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flow behavior and is included in the exact fashion described by Jameson
(ref. 1).

BOUNDARY CONDITIONS

With reference to figure 2, there are four types of boundaries that con-
stitute the flow region and require special treatment. These are the inflow
boundary AH, the outflow boundary DE, the solid-wall boundaries (BC and
GF), and the periodic boundaries AB, CD, HG, and FE. The appropriate set of
conditions for each of these boundaries is described below.

Inflow and outflow boundary conditions used in this study were the char-
acteristic and extra-polation type. If the flow is subsonic there will be
three incoming (right running) characteristics and one outgoing (left running)
characteristic at the inflow while the opposite is true at the outflow boundary
where there are three outgoing (right running) characteristics and one incoming
(left running) characteristic. By the theory of characteristics, three condi-
tions may therefore be specified at the inflow and one condition at the outflow
(ref. 9). The remaining conditions are numerically determined by the solution
of the differential equations. The three conditions specified at the inflow
are the total pressure, total temperature, and the flow angle. The remaining
condition is obtained by extrapolating the outgoing or upstream running Riemann
invariant from the interior to the inlet. For extrapolation type, the static
pressure is extrapolated from the interior cell to the inflow. For supersonic
axial inflow, the inlet Mach number is also specified and held constant in
addition to the three conditions mentioned above.

At the outflow boundary, the one physical condition specified is the
static pressure corresponding to the desired exit Mach number. The three
numerical conditions come from extrapolating the downstream running Riemann
invarient, the y-velocity component v and the total energy E. For super-
sonic axial outflow, the static exit pressure is also extrapolated from the
interior point.

On the blade surface, the "zero flux" conditions are imposed. However,
for estimating the contributions to the momentum equations due to the pressure
terms, we need to evaluate the pressure on the blade surfaces. The normal
pressure gradient at the boundary cell centers is determined by the same fash-
ion described in reference 1. Extrapolation using the pressure gradient and
the pressure at the cell center determines the pressure at the wall.

The periodicity is imposed by setting the flow variables in the cell cen-
ters that 1ie within the computational domain equal to the corresponding per-
fodic cells that 1ie outside the computational domain. For example (with
reference to fig. 2), the unknown flow quantities in the control volumes that
1ie immediately above the periodic boundaries AB and CD are set equal to the
corresponding cell values that 1te immediately above the periodic boundaries
HG and FE whose values are known from the interior point calculations.
Additional details on the implementation of these boundary conditions can be
found in references. 1 and 7.



RESULTS AND DISCUSSION

Numerical solutions of the Euler equations using the Runge Kutta scheme
described eariier were obtained for selected cascade test cases with widely
varying geometries and flow conditions. Results are presented and compared
with solutions of other numerical methods and experimental data. Computational
grids of different types were also used in the calculations to determine their
influence on the solution accuracy.

The Mach number contours calculated for a transonic flow through a com-
pressor cascade are 11lustrated in figure 3. The number of grid points used
in the computations are 65 by 15. The cascade geometry and the grids are shown
in figure 2. The flow 1s subsonic at the inlet and accelerates to a peak Mach
number of 1.246 on the blade suction side before shocking down to an exit Mach
number of 0.67. The computed surface Mach numbers agree very well with the
predictions of other numerical methods. However, there are no experimental
data available for this case.

Figure 4 depicts a high work turbine guide vane geometry (ref. 13) and the
80 by 17 computational grids used for obtaining a fully subsonic flow through
the passage. The computed Mach number contours are shown in figure 5. It is
seen that the flow accelerates from an inflow Mach number of 0.11 to an exit
value of 0.84 4n a very short distance. The surface static pressure ratios
obtained by the present method are shown in figure 6 along with available test
data (ref. 13) an another code (ref. 14) using the two step explicit MacCormack
numerical scheme. Considering the type and coarseness of the grids employed
for this difficult test case, the present code yielded results with very good
accuracy. Better accuracy can be achieved by refining and increasing the num-
ber of grid points in the flow field.

Next example is a flow through a NASA turbine stator rows shown in
figure 7. The calculated critical surface Mach numbers are shown in figure 8.
The wind tunnel data (ref. 10) and the numerical results of another code
(ref. 3) computed in house are also shown in this figure for comparison. The
agreement of the present results with the test data as well as with the other
method 1s very good. However, the poor agreement of the two numerical results

with the test data near the leading edge is mainly due to the nature of the
grid in this region. The numerical schemes treat the leading edge with "cusps”

for solution convergence which i1s not present in the actual airfoil.

The treatment of leading and trailing edges with artificial cusps for
numerical convenience is a common feature while computating flows with sheared
"H* type grids as done in the previous test cases. This is particularly true
for cascades with high incidence, large flow turning, and thick leading/
tratling edge profiles. Numerical results obtained with "H" grids are often
inaccurate and misleading in these important flow regions. For improved accu-
racy, it is preferred that computations be performed on body fitted orthogonal
or near orthogonal "C" or "0" type grids (ref. 11). To 1llustrate this
point, the surface Mach numbers calculated on a "C" grid for the same test
case of figure 7 are compared with the test data and this is shown in figure 9.
It can be seen that the agreement is excellent and far improved near the lead-
ing and trailing edges compared to the "H" grid results.

Figure 10 shows an AVCO rotor blade and the "C" type computational mesh
for which numerical solutions were obtained. This case was particularly chosen
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to test the ability of the present code to calculate transonic flows through
turbine blade passages with high flow incidence, large turning, and thick blade
profiles at the leading and trailing edges. The inlet flow angle is 55°, the
inflow Mach number is 0.66 and the outflow Mach number is near transonic. The
Mach number contours near the leading edge region is shown in figure 11 to
11lustrate the quality of results that can be obtained on a "C" grid with the
present method. Computed surface Mach numbers are plotted in figure 12 along
with the numerical results of reference 3. The agreement between the two
methods are very good except near the shock location where the present method
predicts a peak value of 1.108 compared with 1.152 obtained by the Denton's
code (ref. 3).

The VKI gas turbine rotor blade and the computational grids on which tran-
sonic flow solutions were obtained is pictured in figure 13. Figure 14 com-
pares the predictions of surface Mach numbers with test data obtained from two
different cascade tunnels and two different exit flow conditions. The agree-
ment between the present calculations and the two sets of test data is excel-
lent especially for the case corresponding to exit Mach number of 1.19.

CONCLUSIONS

A computer code for solving the Euler equations using the four stage Runge
Kutta integration scheme has been developed for turbomachinery flow field cal-
culation. The program has been successfully applied to predict blade-to-blade
flows for many cascades with different geometries and flow conditions. Numer-
ical results indicate that the present method can be applied to yield fast
results with good accuracy for a wide variety of cascade configurations and
flow conditions. The "C" type grids produce the best overall results for any
particular test case from the stand point of accuracy, simplicity of implemen-
tation, and boundary condition treatments. The present code, which could be
used in conjunction with any type of user opted computational grids, is simple,
efficient, and accurate enough to be used for cost effective preliminary and
advanced aerodynamic design studies.
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Figure 5, - Math number contours.
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Figure 10. - AVCO turbine rotor geometry and computational 'C'
grids.
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